Math $656 \cdot$ FINAL EXAM • May 13, 2014

1) (8pts) Find all values of $\tanh ^{-1}(i)$.
$\tanh z=i=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}=\frac{e^{2 z}-1}{e^{2 z}+1} \Rightarrow i\left(e^{2 z}+1\right)=e^{2 z}-1 \Rightarrow e^{2 z}(1-i)=1+i \Rightarrow e^{2 z}=\frac{1+i}{1-i}=i$
$\Rightarrow 2 z=\log i=\frac{i \pi}{2}+i 2 \pi k \Rightarrow z=i \pi\left(\frac{1}{4}+k\right), k \in \mathbb{Z}$
2) (12pts) Categorize all singularities of the following functions. Examine also a possible singularity at $\mathrm{z}=\infty$ (hint: substitute $\zeta=1 / z$). Make sure to explain briefly.
(a) $f(z)=\frac{1}{z^{1 / 4} \sin z}=\frac{\zeta^{1 / 4}}{\sin (1 / \zeta)}\left\{\begin{array}{l}z=0: \text { Branch point } \\ z=\infty: \text { Branch point / cluster point } \\ z=\pi k, k \in \mathbb{Z}, k \neq 0: \text { Simple zeros }\end{array}\right.$
(b) $f(z)=\frac{\exp (z)}{\exp (1 / z)}=\exp \left(z-\frac{1}{z}\right)=\exp \left(\frac{1}{\zeta}-\zeta\right)$ Essential singularity at $z=0$ and at $z=\infty$
(c) $f(z)=\frac{\sin (\pi z)}{\sin ^{2}(\pi / z)}=\frac{\sin (\pi / \zeta)}{\sin ^{2}(\pi \zeta)}\left\{\begin{array}{l}z=0 \text { : Cluster point } \\ z=\infty \text { : Essential singularity } \\ z= \pm 1 \text { : Simple poles } \\ z=\frac{1}{k}, k \in \mathbb{Z},|k| \geq 2 \text { : Poles of order } 2\end{array}\right.$
3) (12pts) Find the first two dominant terms in the series expansion of $f(z)=\frac{\cos \left(\log _{p}(z)\right)-1}{\sin \pi z}$ around $z=1$. Hint: a shift $z=1+\zeta$ may help. What would be the radius of convergence of the full series around $\mathrm{z}=1$?

$$
\begin{aligned}
f(z)= & \frac{\cos \left(\log _{p}(z)\right)-1}{\sin \pi z}=\frac{\cos \left(\log _{p}(1+\zeta)\right)-1}{\underbrace{\sin \pi(\zeta+1)}_{-\sin \pi \zeta}}=\frac{\cos \left(\zeta-\frac{\zeta^{2}}{2}+O\left(\zeta^{3}\right)\right)-1}{-\left(\pi \zeta+O\left(\zeta^{3}\right)\right)} \\
= & \frac{-\frac{1}{2!}\left(\zeta-\frac{\zeta^{2}}{2}\right)^{2}+O\left(\zeta^{4}\right)}{-\pi \zeta\left(1+O\left(\zeta^{2}\right)\right)}=\frac{\zeta}{2 \pi} \frac{\left(1-\frac{\zeta}{2}\right)^{2}+O\left(\zeta^{2}\right)}{1+O\left(\zeta^{2}\right)}=\frac{\zeta}{2 \pi} \frac{1-\zeta+O\left(\zeta^{2}\right)}{1+O\left(\zeta^{2}\right)}=\frac{\zeta}{2 \pi}(1-\zeta)+O\left(\zeta^{3}\right)
\end{aligned}
$$

$$
\Rightarrow f(z)=\frac{1}{2 \pi}\left[(z-1)-(z-1)^{2}+O\left((z-1)^{3}\right)\right] \quad \text { Convergence radius }=\text { distance to singularity }=1: \quad|z-1|<1
$$

4) (16pts) Calculate the following integrals, picking the most efficient method for each. Contours are circles of given radius:
(a) $\oint_{|z|=1} \frac{d z}{(\bar{z})^{1 / 4}}=\int_{0}^{2 \pi} \frac{d\left(e^{i \theta}\right)}{\left(e^{-i \theta}\right)^{1 / 4}}=\int_{0}^{2 \pi} \frac{i e^{i \theta} d \theta}{e^{-i \theta / 4}}=i \int_{0}^{2 \pi} e^{i \frac{5 \theta}{4}} d \theta=\frac{4}{5}\left[\exp \left(i \frac{5 \theta}{4}\right)\right]_{0}^{2 \pi}=\frac{4}{5}\left(e^{i \frac{5 \pi}{2}}-1\right)=\frac{4}{5}(i-1)$
(b) Use mapping $z=\frac{1}{\zeta}: \oint_{|z|=2} \frac{\exp (1 / z)}{1-z^{2}} d z=\oint_{|\zeta|=\frac{1}{2}} \frac{\exp (\zeta) d \zeta}{\zeta^{2}\left(1-\frac{1}{\zeta^{2}}\right)}=\oint_{\substack{|\zeta|=\frac{1}{2}}}^{\frac{\exp (\zeta)}{\underbrace{\zeta^{2}-1}_{\substack{\text { Analytic } \\ \text { wihin contour }}}} d \zeta=0}$

Note: without the mapping the solution is longer: $=2 \pi i(\underbrace{\operatorname{Res}(-1)}_{-\sinh 1}+\underbrace{\operatorname{Res}(+1)}_{-e / 2}+\underbrace{\operatorname{Res}(0)}_{1+\frac{1}{3!}+\frac{1}{5!}+\ldots=\sinh 1})=0$
5) (16pts) Calculate the following two integrals. Carefully explain each step, and make sure to obtain a real answer.

Note that along the bottom of the branch cut $z=r e^{i 2 \pi} \Rightarrow z^{1 / 2}=-r$
Take the limit $\varepsilon \rightarrow 0, R \rightarrow \infty: \quad \int_{0}^{\infty} \frac{d r}{\sqrt{r}(r+1)}-\int_{\infty}^{0} \frac{d r}{\sqrt{r}(r+1)}=2 I=2 \pi \Rightarrow I=\pi$
(b) $\quad I \equiv \int_{0}^{+\infty} \frac{x^{3} d x}{a^{6}+x^{6}}$ Integrate around appropriate circular sector ("wedge") containing only one pole Integral over the smallest wedge both sides of which satisfy $z^{6}=r^{6}$: consider a ray $z=r e^{i 2 \pi / 6}=r e^{i \pi / 3}$

$$
\begin{aligned}
\oint \frac{z^{3} d z}{a^{6}+z^{6}} & =\int_{0}^{\infty} \frac{r^{3} d r}{a^{6}+r^{6}}+\int_{\infty}^{0} \frac{\overbrace{\left(e^{i \pi / 3}\right)^{3}}^{-1}\left(e^{i \pi / 3} d r\right)}{a^{6}+r^{6}}+\int_{|z|=R} \frac{z^{3} d z}{a^{6}+z^{6}} \\
& =\left(1+e^{i \pi / 3}\right) \int_{0}^{R} \frac{r^{3} d r}{a^{6}+r^{6}}+\underbrace{\int^{\frac{z^{3}}{a^{6}+z^{6}}}}_{|\ldots| \leq \left\lvert\, \leq \frac{R^{3} \pi R / 3}{R^{6}-a^{6}}=O\left(\frac{1}{R^{2}}\right)\right.}=2 \pi i \underbrace{\operatorname{Res}\left(a e^{i \pi / 6}\right)}_{\frac{N\left(z_{o}\right)}{D^{\prime}\left(z_{o}\right)}}=\frac{2 \pi i\left(a e^{i \pi / 6}\right)^{3}}{6\left(a e^{i \pi / 6}\right)^{5}}=\frac{\pi i}{3 a^{2}} e^{-i \pi / 3}=\frac{\pi e^{i \pi / 6}}{3 a^{2}}
\end{aligned}
$$

6) (12pts) Use Rouche's Theorem to find the number of zeros of $f(z)=4 z^{4}+13 z^{2}+3$ belonging to the following domains: (a) $|z|<1$; (b) $|z|<2$; (c) $1<|z|<2$

- Two roots inside $|z|<1$:

Consider $f(z)=13 z^{2}$ (which has two roots inside $|z|=1$) and $g(z)=4 z^{4}+3$
On the circle $|\mathrm{z}|=1$ we have $|g| \leq 4\left|z^{4}\right|+3=7 \Rightarrow|g|<|f|=13|z|^{2}=13$

- All four roots inside $|\mathrm{z}|<2$:

Consider $f(z)=4 z^{4}$ (which has 4 roots inside $|z|=2$) and $g(z)=3+13 z^{2}$
On the circle $|z|=2$ we have $|g| \leq 3+13|z|^{2}=3+52=55 \Rightarrow|g|<|f|=4 \cdot 2^{4}=64$

- Therefore, there are $4-2=2$ roots in the ring (annulus) $1<|z|<2$

Do two of the last four problems:

7) (12pts) Use the Argument Principle to find the number of roots of $f(z)=2 i-z+z^{2}+z^{3}$ lying in the first quadrant. To do this, sketch the mapping of the relevant quarter-circle (it's quite straightforward).

- Mapping of positive real axis: $f(z)=\underbrace{-x+x^{2}+x^{3}}_{u}+\underbrace{2 i}_{v} \Rightarrow v=2=$ const \Rightarrow horizontal line $v=2$
- Mapping of quarter-circle:
$R \rightarrow \infty \Rightarrow f\left(\operatorname{Re}^{i \theta}\right) \approx\left(\operatorname{Re}^{i \theta}\right)^{3}=R^{3} e^{3 i \theta}, \theta \in[0, \pi / 2) \Rightarrow$ Approaches $3 / 4$ of a circle as $\mathrm{R} \rightarrow \infty$
- Mapping of the imaginary axis, $z=i$ where $y \geq 0$ (the only non-trivial and crucial part):

$$
f(z=i y)=\underbrace{-y^{2}}_{u}+i \underbrace{\left(2-y-y^{3}\right)}_{v}
$$

$\left\{\begin{array}{l}\mathrm{v}=\operatorname{Im} f(z=i y) \text { monotonically decreasing (curve bends downward as } y \rightarrow \infty) \\ u=\operatorname{Re} f(z=i y) \text { also monotonically decreasing (bends to the left as } y \rightarrow \infty)\end{array} \Rightarrow\right.$ curve bends away from origin
8) (12pts) Suppose $f(z)$ is an entire function, satisfying inequality $|f(z)|<a+|z|^{k}$ everywhere in the complex plane (here $a>0$ is a real constant). Prove that $f(z)$ is a polynomial. Hint: recall the proof of the Liouville's Theorem using the extended version of Cauchy Integral Formula.

Apply Cauchy Integral Formula to the $(k+1)$ st derivative, and take a circle as the contour; since the function is entire, we can increase the circle size to infinity:

$$
\begin{aligned}
& \frac{d^{k+1} f}{d z^{k+1}}(z)=\frac{k!}{2 \pi i} \oint_{C_{R}} \frac{f(\zeta) d \zeta}{(\zeta-z)^{k+2}} \\
& \Rightarrow\left|\frac{d^{k+1} f}{d z^{k+1}}(z)\right| \leq \frac{k!}{|2 \pi i|} \oint_{|\zeta|=R} \frac{|f(\zeta)||d \zeta|}{\left|(\zeta-z)^{k+2}\right|}=\frac{k!}{2 \pi} \oint_{|\zeta|=R} \frac{|f(\zeta)| R d \theta}{R^{k+2}} \\
&<\frac{k!}{2 \pi} \oint_{|\zeta|=R} \frac{\left(a+R^{k}\right) R d \theta}{R^{k+2}}=k!\left(\frac{a}{R^{k+2}}+\frac{1}{R}\right) \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Thus, all derivatives of order $\mathrm{k}+1$ and higher are zero, which means that the Taylor series has finitely many terms \Rightarrow it's a polynomial
9) (12pts) Indicate domains of convergence of each series:
a) $\sum_{k=0}^{\infty} \frac{\exp (2 z k)}{k!}=\sum_{k=0}^{\infty} \frac{[\exp (2 z)]^{k}}{k!}=\exp (\exp (2 z))$ Converges in entire \mathbb{C} (Also follows from the ratio test)
b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{\exp (-z k)}{k}=\sum_{k=1}^{\infty}(-1)^{k} \frac{[\exp (-z)]^{k}}{k}=-\log \left(1-e^{-z}\right)$
(You can also use the ratio test) Converges wherever $\left|\mathrm{e}^{-z}\right|=e^{-x}<1 \Rightarrow x>0 \Rightarrow$ Right half-plane
10) (12pts) Consider the map $w=z+\frac{1}{z}$. Describe the images of the following sets under this map: (a) unit circle $|z|=1$, (b) circle of radius $2,|z|=2$. (c) exterior of the unit disk, $|z|>1$. Hint: examine Cartesian components of the image, $w=u+i v$
(a) Unit cirlce: $z=e^{i \theta} \Rightarrow w=z+\frac{1}{z}=e^{i \theta}+e^{-i \theta}=2 \cos \theta \Leftarrow$ Segment of real axis, $x \in[-2,2]$
(b) Circle $|z|=2: z=2 e^{i \theta} \Rightarrow w=2 e^{i \theta}+\frac{1}{2} e^{-i \theta}=\frac{5}{2} \cos \theta+i \frac{3}{2} \sin \theta \Leftarrow$ Equation of ellipse $\left(\frac{x}{5 / 2}\right)^{2}+\left(\frac{y}{3 / 2}\right)^{2}=1$
(c) This mapping is conformal on $\mathbb{C} \backslash\{0, \infty\} \Rightarrow$ Interiors map to interiors, boundaries map to boundaries
\Rightarrow Both interior and exterior of unit circle map to the entire \mathbb{C} excluding segment of real axis with $\operatorname{Re} z \in[-2,2]$ (The only domain that has a boundary which is a line segment is the entire \mathbb{C} plane lying ouside of this line segment)

