
Math 656 • FINAL EXAM • May 13, 2014 

1)  (8pts) Find all values of tanh1(i). 
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2) (12pts) Categorize all singularities of the following functions. Examine also a possible singularity at z= 
(hint: substitute 1 / z  ). Make sure to explain briefly. 
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3)  (12pts) Find the first two dominant terms in the series expansion of 
  cos log 1

( )
sin

p z
f z

z


   around z = 1. 

Hint: a shift 1z    may help. What would be the radius of convergence of the full series around z=1? 
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1     Convergence radius = distance to singularity = 1: | 1 | 1z   

 
 



4)  (16pts) Calculate the following integrals, picking the most efficient method for each. Contours are circles 
of given radius:   
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5) (16pts) Calculate the following two integrals. Carefully explain each step, and make sure to obtain a real 

answer. 
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6) (12pts) Use Rouche’s Theorem to find the number of zeros of  f (z) = 4z4 + 13z2 + 3 belonging to the 
following domains: (a) |z| < 1;  (b) |z| < 2;  (c) 1 < |z| < 2 

• Two roots inside |z| < 1:  

Consider f (z) = 13z2 (which has two roots inside |z|=1) and g(z) = 4z4 +3 
On the circle |z|=1 we have 4 2| | 4| | 3 7 | | | | 13 | | 13g z g f z        
 

• All four roots inside |z|<2: 

Consider f (z) = 4z4 (which has 4 roots inside |z|=2) and g(z) = 3 + 13z2 

On the circle |z|=2 we have 2 4| | 3 13 | | 3 52 55 | | | | 4 2 64g z g f           
 

• Therefore, there are 4-2=2 roots in the ring (annulus)  1<|z|<2 

 

Do two of the last four problems: 

7) (12pts) Use the Argument Principle to find the number of roots of f (z) = 2i  z + z2 + z3 lying in the first 
quadrant. To do this, sketch the mapping of the relevant quarter-circle (it’s quite straightforward). 

 

• Mapping of positive real axis: 
2 3( ) 2  2     horizontal line v=2

vu

f z x x x i v const          

• Mapping of quarter-circle: 
3 3 3(Re ) (Re ) , [0, / 2)  Approaches 3/4 of a circle as Ri i iR f R e             

• Mapping of the imaginary axis, z=i y  where  y0   (the only non-trivial and crucial part): 
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2i

No roots: 
Winding number = 0 



8)  (12pts) Suppose f(z) is an entire function, satisfying inequality | f (z)| < a + |z|k everywhere in the complex 
plane (here a > 0 is a real constant). Prove that f(z) is a polynomial. Hint: recall the proof of the Liouville’s 
Theorem using the extended version of Cauchy Integral Formula. 

Apply Cauchy Integral Formula to the (k+1)st derivative, and take a circle as the contour; since the function 
is entire, we can increase the circle size to infinity: 
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Thus, all derivatives of order k+1 and higher are zero, which means that the Taylor series has finitely many 
terms   it’s a polynomial 

9) (12pts) Indicate domains of convergence of each series:  
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10)  (12pts) Consider the map 
1

w z
z

  .  Describe the images of the following sets under this map: (a) unit 

circle |z|=1, (b) circle of radius 2, |z|=2. (c) exterior of the unit disk, |z|>1. Hint: examine Cartesian 
components of the image, w = u + i v 
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Both interior and exterior of unit circle map to the entire  

 on \{0, } Interiors map to interiors, boundaries map to bou

excluding segment of real axis with Re [ 2, 2]

(The only

ndaries

 domain that h

z  
 


as a boundary which is a line segment is the entire  plane lying ouside of this line segment)

 


